Hybrid biogeography-based evolutionary algorithms
نویسندگان
چکیده
Hybrid evolutionary algorithms (EAs) are effective optimization methods that combine multiple EAs. We propose several hybrid EAs by combining some recently-developed EAs with a biogeography-based hybridization strategy. We test our hybrid EAs on the continuous optimization benchmarks from the 2013 Congress on Evolutionary Computation (CEC) and on some real-world traveling salesman problems. The new hybrid EAs include two approaches to hybridization: (1) iteration-level hybridization, in which various EAs and BBO are executed in sequence; and (2) algorithm-level hybridization, which runs various EAs independently and then exchanges information between them using ideas from biogeography. Our empirical study shows that the new hybrid EAs significantly outperforms their constituent algorithms with the selected tuning parameters and generation limits, and algorithm-level hybridization is generally better than iteration-level hybridization. Results also show that the best new hybrid algorithm in this paper is competitive with the algorithms from the 2013 CEC competition. In addition, we show that the new hybrid EAs are generally robust to tuning parameters. In summary, the contribution of this paper is the introduction of biogeography-based hybridization strategies to the EA community. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Solving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...
متن کاملSoft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کاملParticipative Biogeography-Based Optimization
Biogeography-Based Optimization (BBO) has recently gained interest of researchers due to its simplicity in implementation, efficiency and existence of very few parameters. The BBO algorithm is a new type of optimization technique based on biogeography concept. This population-based algorithm uses the idea of the migration strategy of animals or other species for solving optimization problems. t...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملA Novel Heuristic Optimization Methodology for Solving of Economic Dispatch Problems
This paper presents a biogeography-based optimization (BBO) algorithm to solve the economic loadDispatch (ELD) problem with generator constraints in thermal plants. The applied method can solvethe ELD problem with constraints like transmission losses, ramp rate limits, and prohibited operatingzones. Biogeography is the science of the geographical distribution of biological species. The modelsof...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 30 شماره
صفحات -
تاریخ انتشار 2014